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1. Introduction

U.S. firms split their stocks quite frequently. In spite of inflation, positive
real interest rates, and significant risk premiums, the average nominal stock
price in the U.S. during the past 50 years has been almost constant. Why would
firms keep on splitting their stocks to maintain low prices? This behavior is
puzzling since, by doing so, firms actively increase their effective tick size (i.e.,
tick size/price), potentially exposing their stockholders to larger transaction
costs.

This paper presents a value maximizing market microstructure model of
stock splits. Our model joins practitioners in predicting that firms split their
stocks to move the stock price into an optimal trading range in order to
improve liquidity.1,2 The driving force of the model stems from the fact that
prices on U.S. exchanges are restricted to multiples of 1/8th of a dollar.3 This
restriction on prices creates a wedge between the ‘‘true’’ equilibrium price and
the observed price.4 Thus a portion of the transaction costs incurred by traders
is purely an artifact of discreteness.

Anshuman and Kalay (1998) show that discreteness related commissions
depend on the location of the ‘‘true’’ equilibrium price on the real line. In other
words, whether the discrete pricing restriction is binding or not depends on the
location of the ‘‘true’’ equilibrium price relative to a legitimate price (tick) in a
discrete price economy. It may so happen that the ‘‘true’’ equilibrium price
(plus any transaction cost) is close to a tick. Discreteness related commissions
would be low in such a period. As information arrives in the market, the
location of the ‘‘true’’ equilibrium price changes, and discreteness related
commissions would, therefore, vary over time. They could be as low as 0 or as
high as the tick size.

Interestingly, liquidity traders can take advantage of the variation in
discreteness related commissions by timing their trades. Of course, such

1Academicians have mostly relied on signaling models to explain stock splits (Grinblatt et al.,

1984). More recently, Muscarella and Vetsuypens (1996) provide evidence consistent with the

liquidity motive of stock splits. Practitioners, however, have all along held the belief that stock

splits help restore an optimal trading range that maximizes the liquidity of the stock (see Baker and

Powell, 1992; Bacon and Shin, 1993).
2 Independent of our work, Angel (1997) has also presented a model of optimal price level that

explains stock splits. In his model, the optimal price provides a tradeoff between firm visibility and

transaction costs. In contrast, our model examines the behavior of liquidity traders in the presence

of discrete pricing restrictions.
3There are exceptions to this restriction and more recently the NYSE has initiated a move

toward decimal trading.
4The ‘‘true’’ equilibrium price is the market value of the asset conditional on all publicly

available information in an otherwise identical continuous-price economy without any frictions

(transaction costs).
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strategic behavior is not costless. It involves close monitoring of the market
to take advantage of periods with low discreteness related commissions.
In general, liquidity traders differ in terms of their opportunity costs of
monitoring the market. Some liquidity traders may prefer not to time the
market because the benefits from timing trades do not offset their opportunity
costs of monitoring. In contrast, other liquidity traders who are endowed with
low opportunity costs of monitoring may find it beneficial to time their trades.
Such discretionary traders would trade together in a period of low discreteness
related commissions. The presence of additional liquidity traders in this period
(a period of concentrated trading) forces the competitive market maker to
charge a lower adverse selection commission than otherwise. Thus, discre-
tionary liquidity traders save on execution costs – adverse selection as well as
discreteness related commissions.

Because the tick size is fixed in nominal terms (at 1/8th of a dollar), the
economic significance of the savings in discreteness related commissions
depends on the stock price level. At low stock price levels, the savings in
execution costs due to timing of trades may be significant enough to offset the
opportunity costs of monitoring of most liquidity traders. There would be
highly concentrated trading at low price levels as most liquidity traders would
exercise the flexibility of timing trades. Conversely, at high stock price levels,
few liquidity traders would time trades because the potential savings in
execution costs are economically insignificant.

The key implication of the model is that the stock price level affects the
distribution of liquidity trades across time, and consequently, the transaction
costs incurred by them. In particular, we show that there exists an optimal
stock price level that induces an optimal amount of discretionary trading. This
optimal price results in the lowest (total) expected transaction costs incurred by
all liquidity traders.

Because investors desire liquidity (Amihud and Mendelson, 1986; Brennan
and Subrahmanyam, 1995), a value-maximizing firm should choose a stock
price level that maximizes liquidity (minimizes the total transaction costs
incurred by all liquidity traders). By splitting (or reverse splitting) its stock, a
firm can always reset its stock price to the optimal price level.

We present numerical solutions of the model to show that, under certain
parameter values, an optimal price exists. The numerical solutions show that
the optimal price is increasing in the volatility of the underlying asset and
decreasing in the fraction of liquidity traders. We also show that the
optimal price is (linearly) increasing in the tick size. Finally, using intraday
transaction data, we document a cross-sectional inverse relation between the
coefficient of variation of time-aggregated trading volume (a measure of the
degree of concentrated trading in a stock) and the stock price level.
This empirical evidence and other existing evidence are consistent with the
model.

V.R. Anshuman, A. Kalay / Journal of Financial Markets 5 (2002) 83–125 85



The paper is organized as follows. Section 2 discusses a numerical example
that illustrates the key features of the model. The model is developed in
Section 3. Section 4 presents numerical solutions of the model. Section 5
discusses empirical evidence relevant to the model, and Section 6 concludes the
paper.

2. A numerical example

Consider the following example that illustrates the central theme of the
model – endogenization of discretionary trading. We make the following
simplifying assumptions in the numerical example. (i) There are two trading
opportunities (Periods 1 and 2). (ii) Discreteness related commissions in each
period are either $0.02 or $0.10 with equal probability.5 (iii) Firms are
restricted to choose between two base prices ($50 or $100) – the base price
could be thought of as the offer price in an initial public offering. (iv) Liquidity
traders are of two types: 80 liquidity traders face very low opportunity costs of
monitoring ($0.01 per dollar of trade) and 40 liquidity traders face extremely
high opportunity costs of monitoring. (v) In each period, there are a fixed
number of informed traders who speculate on information that is revealed at
the end of the period.

Before the market opens, liquidity traders face a strategic choice. They know
that monitoring the market can help them time their trades into the period with
low discreteness related commissions ($0.02). Not only would they be saving on
discreteness related commissions but also on adverse selection commissions
because of the concentration of liquidity trades in a single period.

However, monitoring the market is not costless. Among the liquidity traders,
those with extremely high monitoring costs would not find timing trades
worthwhile. Such liquidity traders (40) behave like nondiscretionary traders.
Assuming that there are negligible waiting costs, these traders would be
indifferent between trading in Period 1 or trading in Period 2. Let equal
number of nondiscretionary traders (40/2=20) arrive in the market in each
period.

The interesting question is with regard to the 80 liquidity traders with low
monitoring costs. Should they incur monitoring costs and time their trades or
join the bandwagon of nondiscretionary traders? If they choose not to monitor
(and, therefore, act as nondiscretionary traders), then each trading period
would consist of (80+40)/2=60 liquidity traders, assuming that the arrival
rate of nondiscretionary traders is constant (equal) in both periods. On the
other hand, if these liquidity traders choose to monitor, one of the trading

5This assumption is purely for illustration purposes. In reality, there exists a probability

distribution of discreteness related commissions over the interval (0, tick size).
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periods would have 100 (80 discretionary and 20 nondiscretionary) liquidity
traders, and the other period would have only 20 nondiscretionary liquidity
traders. Hence the distribution of liquidity traders across the two periods
would be one of the following: (60, 60) if they choose not to monitor the market
and either (20, 100) or (100, 20) if they monitor the market.

Liquidity traders with low monitoring costs would think as follows. Their
choice to monitor or not depends on the total (per dollar) transaction costs
they face under each scenario. Total transaction costs are composed of adverse
selection commissions, discreteness related commissions, and monitoring costs.
Table 1 presents these costs at the two base prices in this economy.

Consider Panel A of Table 1 for the case when the base price is $50. Suppose
liquidity traders with low monitoring costs choose to monitor the market. Then,
in the period they trade, the adverse selection commissions would be low
because of the presence of 100 liquidity traders. In contrast, when they choose
not to monitor the market, the adverse selection commissions are going to be
higher because there would be only 60 liquidity traders. Assume that the adverse
selection commissions are $0.046 when there are 100 liquidity traders and
$0.535 when there are 60 liquidity traders (in the model, we derive the adverse
selection commissions endogenously). Monitoring the market and concentrat-
ing trades in a single period results in savings of ($0.535� $0.046)=$0.489 in
adverse selection commissions, or 0.978% of the base price of $50.

Panel B of Table 1 shows the adverse selection commissions when the base
price is $100. These numbers are scaled up versions of the adverse selection
commissions when the base price is $50. However, as shown in the (%) adverse
selection commission column, the adverse selection commissions (given a fixed
number of liquidity trades) are identical at both base prices in percentage
terms. Therefore, the benefit of concentrated trading (in terms of savings in
adverse selection commissions) is 0.978%, which is invariant to the base price.

Now consider discreteness related commissions when the base price is $50
(Panel A). If liquidity traders with low monitoring costs choose to monitor,
they would incur lower discreteness related commissions because they can time
their trades in the period with low discreteness related commissions ($0.02).
Note that they would incur expected discreteness related commissions of $0.04
(this is higher than $0.02 because it is always possible that both trading periods
have a realized discreteness related commission of $0.10).6 In contrast, when
such liquidity traders choose not to monitor, they incur a higher expected
discreteness related commission of $0.06 (an average of $0.02 and $0.10). These
commissions ($ values) stay the same at the higher base price of $100 (Panel B).

6The probability of both trading periods having high discreteness related commissions ($0.10) is

0.5� 0.5=0.25. The probability of at least one period having low discreteness related commissions

($0.02) is 1�0.25=0.75. Therefore, the expected discreteness related commissions is 0.25�
$0.10+0.75� $0.02=$0.04.
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Because discreteness causes fixed costs, the benefit of timing trades (due to
savings in discreteness related commissions) is fixed at $0.06�$0.04=$0.02
independent of the base price. However, on a per dollar basis, the savings from
timing trades are 0.04% at the lower base price of $50, but only 0.02% at the
higher base price of $100.

Table 1

Numerical example

Liquidity traders are of two types – those who incur low monitoring costs (80) and those who incur

high monitoring costs (40). This numerical example illustrates the decision-making of liquidity

traders with low monitoring costs. If these liquidity traders choose to monitor the market, the

number of liquidity traders across the two periods would either be (100, 20) or (20, 100). If they

choose not to monitor, the number of liquidity traders in each period would be 60. At a base price

of $50, it is better to monitor because the total transaction costs are lower (Panel A). Conversely, at

a base price of $100, it is better not to monitor (Panel B). The total transaction costs incurred by all

liquidity traders (nondiscretionary and discretionary) is shown in Panel C.

Panel A: Decision to monitor the market (base price is $50)

Adverse

selection

commissions

Discreteness

related

commissions

Monitoring

costs

(per dollar)

Total

transaction

costs

(per dollar)

Monitor Liquidity

traders

($) (%) ($) (%) (%) (%)

Yes 100 0.046 0.092 0.04 0.080 1.000 1.172

No 60 0.535 1.070 0.06 0.120 0.000 1.190

Savings 0.489 0.978 0.02 0.040 �1.000 0.018

Panel B: Decision to monitor the market (base price is $100)

Adverse selection

commissions

Discreteness

related

commissions

Monitoring

costs

Total

transaction

costs

Monitor Liquidity

traders

($) (%) ($) (%) (%) (%)

Yes 100 0.092 0.092 0.04 0.040 1.000 1.132

No 60 1.07 1.070 0.06 0.060 0.000 1.130

Savings 0.978 0.978 0.02 0.020 �1.000 �0.002

Panel C: Total transaction costs incurred by ALL liquidity traders

Base

price Distribution of trades

Adverse

selection

costs

Discreteness

related costs

Monitoring

costs

Total

transaction

costs

$50 (100, 20) or (20, 100) 0.322 0.112 0.800 1.234

$100 (60, 60) 1.284 0.072 0.000 1.356
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Besides adverse selection commissions and discreteness related commissions,
liquidity traders also incur monitoring costs (1%) if they choose to monitor.
When the base price is $50 (Panel A), the sum of adverse selection
commissions, discreteness related commissions and monitoring costs is
1.172% upon monitoring and 1.19% without monitoring. When the base
price is $100 (Panel B), the total transaction costs are 1.132% upon monitoring
and 1.130% without monitoring.

The decision to monitor or not depends on the total savings in transaction
costs shown in the bottom row of Panels A and B in Table 1. At a lower base
price of $50, monitoring is preferred because the total savings are 0.018%. In
contrast, at a higher base price of $100, it is better not to monitor because the
savings are �0.002%.

The key to the model is the difference in the nature of the two components of
(dollar) execution costs – (dollar) adverse selection and (dollar) discreteness
related commissions. The former increases in proportion to the base price
whereas the latter, being fixed, stays the same at all price levels. Therefore,
discretionary liquidity are indifferent about the price level with respect to the
savings in adverse selection commissions (0.978% at both base prices).
However, they do care about the price level with respect to savings in
discreteness related commissions (0.02% at the higher base price of $100, but
0.04% at the lower base price of $50).

At the lower base price of $50, the savings in discreteness related
commissions are sufficiently high, and total savings in execution costs (adverse
selection and discreteness related commissions) offset monitoring costs.
Monitoring the market is therefore beneficial to liquidity traders with low
monitoring costs. In contrast, at the higher base price of $100, monitoring is
not beneficial. Hence, liquidity traders with low monitoring costs endogenously
choose to act as discretionary traders when the base price is $50, but prefer to
act as nondiscretionary traders when the base price is $100. As a result, when
the base price is $50, the trading pattern across the two periods is either (100,
20) or (20, 100). In contrast, when the base price is $100, the trading pattern is
(60, 60). Thus, the base price level affects the distribution of liquidity traders
across the two periods.

Panel C in Table 1 shows the total transaction costs due to adverse selection,
discreteness, and monitoring incurred by all liquidity traders at the two base
prices. For the computations in Panel C of Table 1, we assume that the adverse
selection commission is $0.575 when the number of liquidity traders in a
period is 20. This situation arises in one of the periods when the base
price is $50. To read Panel C in Table 1, consider the first row where the base
price is $50. 100 liquidity traders face an adverse selection commission of
$0.046 and 20 liquidity traders face an adverse selection commission of $0.575.
On a per dollar basis, the total adverse selection commissions are
[100� $0.046+ 20� $0.575]/$50=0.322. We refer to this sum of all adverse
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selection commissions as the adverse selection component of total transaction
costs.

Furthermore, 100 liquidity traders face discreteness related commissions of
$0.04 and 20 liquidity traders face discreteness related commissions of $0.08
(this is less than $0.10 because they may be just lucky and trade in a period with
discreteness related commissions of $0.02). The total discreteness related
commissions on a per dollar basis is [100� $0.04+20� $0.08]/$50=0.112 (we
refer to the sum of all discreteness related commissions as the discreteness
related component of total transaction costs).

Finally, 80 liquidity traders incur monitoring costs of 1%, implying
total monitoring costs of [80� (0.01� $50)/$50]=0.80 on a per dollar basis.
This is the monitoring cost component of total transaction costs. The total
transaction costs are [0.322+0.112+0.80]=1.234 on a per dollar basis. Note
that this is the total transaction cost of all liquidity traders, taken together as a
group.

In contrast, when the base price is $100, the total transaction costs (on a per
dollar basis) are 1.356. From the firm’s perspective, the lower base price of $50
is preferable because liquidity traders (nondiscretionary and discretionary,
taken together as a group) face lower total transaction costs on a per dollar
basis.

Panel C in Table 1 also shows that the adverse selection component is
increasing in the base price. This situation arises because a lower base price is
associated with more concentrated trading. Consequently, many liquidity
traders incur low adverse selection commissions, resulting in a lower adverse
selection component. In contrast, the discreteness related and the monitoring
cost components are decreasing in the base price. This opposite relationship
provides the tradeoffs for an optimal price level.

In contrast to the numerical example, the model allows for a continuum of
monitoring costs for liquidity traders, a continuum of discreteness related
commissions, a continuum of base prices, and multiple (although, finite)
rounds of trading opportunities. More importantly, the adverse selection and
discreteness related commissions are endogenously determined.

The intuition of the model can also be explained as follows. A lower
base price induces more liquidity traders to act as discretionary traders.
This is beneficial because greater discretionary trading results in a
lower adverse selection component. However, a lower base price also has
adverse cost implications. First, the discreteness related commission (DRC)
component increases and higher (cumulative) monitoring costs are incurred
because more liquidity traders act as discretionary traders. The optimal price,
which results in an optimal amount of discretionary trading, is the one
equating the marginal adverse selection component on the one hand to the sum
of the marginal DRC and the marginal monitoring cost component on the
other hand.
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3. The model

This section develops a market microstructure model that captures the role
of the asset price level in determining the behavior of market participants. The
asset price process is given by Pt ¼ P0 þ

Pt
t¼1 dt; where Pt is the underlying

asset price at time t; P0 is an initial base price and dt½� Nð0; s2Þ	 represents an
unanticipated piece of (short-lived) private information that is revealed at the
end of each period t:

We also assume that s is linear in the base price, i.e., sðP0Þ ¼ kP0; where k is
referred to as the volatility parameter.7 This characterization recognizes that
the magnitude of private information released in each period is proportional to
the underlying asset value. The rest of the economy is characterized by the
following assumptions:

(A1) The size of the trading population is T and there are m trading periods.
(A2) Risk neutral market makers post competitive prices before accepting

order flow. Market makers do not incur order processing costs and do not face
any inventory constraints.

(A3) A fraction (1 � l) of the trading population (T) consists of cash
constrained risk neutral informed traders who trade on short-lived information
in each one of the m periods. They obtain (identical) perfect signals of dt at the
beginning of each period t:

(A4) A fraction l of the trading population (T) consists of risk neutral
uninformed liquidity traders.

A2 ensures that market makers post ask and bid prices such that the
expected losses to informed traders are offset by the expected profits from
uninformed liquidity traders (as in Admati and Pfleiderer, 1989). A3 implies
that informed traders cannot assume unbounded positions to take advantage
of the perfect signal because of wealth constraints (again, as in Admati and
Pfleiderer, 1989). Their order size is normalized to 1 for convenience. Note, d is
short-lived information that is revealed at the end of each period. Therefore, in
order to utilize their (exogenously) acquired private information, informed
traders must trade in the same period they receive information. For
convenience, we assume that in each period, tAð1;mÞ; the same informed
traders are observing a private signal (dt) and taking positions based upon this
information.

7Our assumption of linearity is consistent with the standard assumption in asset pricing

literature. It mathematically follows that splitting an asset into n equal parts results in the standard

deviation of each part being equal to (1/n)th the standard deviation of the original asset. In other

words, standard deviation is linearly related to underlying asset value.
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3.1. Equilibrium commissions

Consider the ask side of the market (the analysis is identical for the bid side
of the market). For the competitive, risk neutral market maker, the equilibrium
ask commission (a
) can be determined by setting his expected profits to zero.
Given A3, the number of informed traders in each period is ð1 � lÞT : For
purposes of illustration let the remaining uninformed liquidity traders (lT) be
equally distributed across the m periods. Then, we get the equilibrium
commission (a
) by solving the following equation (see Appendix A for the
derivation):

�ð1 � lÞT sðP0Þf
a

P0

� �
� 1 � F

a

P0

� �� �
a

� �
þ

lT
m

� �
a ¼ 0; ð1Þ

where fð:Þ and Fð:Þ represent the probability density function and the
cumulative distribution function of the standard normal distribution,
respectively. The left hand side of Eq. (1) shows the expected profits of the
market makers, which is made up of two components – the first term represents
the expected losses to informed traders and the second term represents the
expected profits from liquidity traders.

Note that T factors out of Eq. (1). Thus, the trading population (T) is
irrelevant for the analysis. Also, if a
 is the solution to Eq. (1), then, under
continuous prices, the ask price (Ac) is equal to Pt�1 þ a* : We refer to a
 as the
adverse selection commission. Because sðP0Þ increases linearly in P0; it turns
out that the (dollar) adverse selection commission (a
) also increases linearly in
P0: However, as shown in Appendix A the adverse selection commission per
dollar traded (i.e., percentage commissions) is constant and independent of the
base price (P0).

3.2. Discreteness related commissions (DRC)

Under discrete prices (separated by ticks of size d), the market maker’s
pricing policy is different. In all likelihood, it may not be feasible to set the
price at Ac ¼ Pt�1 þ a* because Ac may not be an exact multiple of the tick
size (d). Anshuman and Kalay (1998) show that, under discrete prices,
competitive market makers round the ask price upward to the nearest feasible
price (similarly, on the bid side of the market, the continuous-case bid price is
rounded downward to the nearest feasible price).8 Therefore, the discreteness

8Anshuman and Kalay (1998) examine the impact of discrete pricing restrictions in greater detail.

Following them, we assume that there can be no cross-subsidization of profits across time, i.e.,

market makers could sell below a
 in one period and sell above a
 in the other period, thereby,

selling at an average commission of a
: Such a linear combination of trades, i.e., splitting orders

and executing them at adjacent prices, is assumed to be very costly. Alternatively, one can assume

that the market maker is not allowed to use mixed strategies in his pricing rule.
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related commissions on the ask side of the market are equal to d2Mod½P0 þ
a
; d	 (if Mod½P0 þ a
; d	 > 0) or equal to 0 (if Mod½P0 þ a
; d	 ¼ 0).

The restriction on discreteness of prices results in a few interesting
implications. First, due to discreteness, there is an additional component of
transaction costs, henceforth referred to as DRC. The equilibrium commission
is going to vary in the range [a
; a
 þ d), depending on the location of Ac

ð¼ Pt�1 þ a* Þ on the real line. Second, given that Pt�1 and a
 are common
knowledge at time t; all market participants can infer the exact magnitude of
DRC in the current period.

3.3. Strategic liquidity trading

Liquidity traders can reduce transaction costs by deferring their trades to a
period where DRC are very low. More importantly, they would also face lower
adverse selection commissions because of the ensuing concentration of trades.
The benefits of strategically timing trades can be a significant reduction in
execution costs.

Of course, such strategic behavior is not costless. It involves close
monitoring of the market to take advantage of periods with low DRC. The
monitoring costs for a liquidity trader depends on the opportunity cost of his
or her time. From here on, we recognize that liquidity traders face differential
opportunity costs of monitoring.

(A5) At time t ¼ �p; risk neutral liquidity traders (lT) make a strategic
decision – whether to act as discretionary or nondiscretionary traders. This
decison depends on their personal opportunity costs of monitoring. We assume
that, on a continuum of increasing monitoring costs, the qth percentile liquidity
trader incurs a (per dollar) monitoring cost, CðqÞ ¼ f =½�lnðqÞ	1=w; where f > 0
and w > 1:

At time t ¼ �p; all liquidity traders are potential discretionary traders.
Liquidity traders weigh the benefits of discretionary trading (namely, lower
execution costs) against their personal opportunity costs of monitoring. Only
those liquidity traders who foresee a net benefit choose to act as discretionary
traders. We assume that, on a continuum of increasing monitoring costs,
the qth percentile liquidity trader incurs a (per dollar) monitoring cost,
CðqÞ ¼ f =½�lnðqÞ	1=w; where f > 0 and w > 1:9 In general, the parameter f tends
to ‘‘shift’’ CðqÞ up or down and the parameter w tends to alter the shape of the
function CðqÞ: This is illustrated in Fig. 1, which shows the cost function for a

9By constraining f and w to be greater than 0, we ensure that C0ðqÞ > 0: Thus, CðqÞ; which

represents the personal monitoring cost incurred by the qth percentile liquidity trader, is increasing

in q; by construction. Note that Cð0Þ-0 and Cð1Þ-p: Therefore, traders differ in monitoring

costs over the interval (0;p). The constraint w > 1 is required for proper integration of the cost

function, as discussed in Appendix C.

V.R. Anshuman, A. Kalay / Journal of Financial Markets 5 (2002) 83–125 93



few combinations of the parameter values f and w: We refer to f and w as the
monitoring cost parameters.

If the q
 percentile liquidity trader’s personal monitoring cost just offsets the
savings in execution costs from timing trades, he would be indifferent between
acting as a discretionary or a nondiscretionary trader. Assuming that he
chooses to act as a discretionary trader, the fraction of lT liquidity traders who
act as discretionary traders is q
; in equilibrium. The remaining fraction
(1 � q
) would rationally choose to act as nondiscretionary traders because
they face higher monitoring costs than that of the q
 percentile liquidity trader.

(A6) All liquidity traders realize their trading requirements at time t ¼ 0�:
Discretionary liquidity traders can trade in any one of the m periods. Waiting
costs are negligible and the arrival rate of nondiscretionary liquidity traders
into the market is constant.

Recall, the total trading population is T : Among these, a fraction ð1 � lÞT
are informed traders who trade in each one of the m periods. The remaining
fraction lT consists of liquidity traders. Among the liquidity traders, a fraction

Fig. 1. The monitoring cost function. The monitoring cost function specifies the opportunity cost

of monitoring incurred by the qth percentile trader. The cost function is CðqÞ ¼ f =½�lnðqÞ	1=w;
where f > 0 and w > 1: The monitoring cost parameters f and w affect the shape of the cost

function, as shown in the three representative situations in the graph. In general, the parameter f

tends to ‘‘shift’’ the cost function up or down, whereas the parameter w tends to affect the curvature

of the cost function.
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q
lT choose to act as discretionary traders and aggregate their trades in one of
m periods (with low DRC ). The remaining fraction ð1 � q
ÞlT consists of
nondiscretionary traders.10 Given that there are negligible waiting costs,11

nondiscretionary traders are indifferent between trading early or late.
We assume that they arrive in the market at a constant rate.12 In other
words, nondiscretionary traders are distributed equally across all the m
periods.

The trading pattern consists of a single period of concentrated trading and
m� 1 periods of ‘‘regular’’ trading. Let TD represent the number of
discretionary traders and TND represent the number of nondiscretionary
traders per period. Then,

TD ¼ q* ðlTÞ; ð2Þ

TND ¼ ð1 � q* ÞðlT=mÞ: ð3Þ

In the period of concentrated trading, DRC and adverse selection commissions
are low compared to the remaining periods. Let the adverse selection
commission in the period of concentrated trading be al and let the adverse
selection commission in the remaining periods be ah: Note, al is less than ah
because of the presence of additional liquidity traders in the period of
concentrated trading. The equilibrium adverse selection commissions, al and
ah; are given by the solutions of Eqs. (4) and (5), respectively, where the market
maker’s expected profit function is set to zero. These equations are identical to
Eq. (1), except that the number of liquidity traders is different:

al: �ð1 � lÞT sðP0Þf
a

P0

� �
� 1 � F

a

P0

� �� �
a

� 	
þ ðTd þ TNDÞa ¼ 0; ð4Þ

ah: �ð1 � lÞT sðP0Þf
a

P0

� �
� 1 � F

a

P0

� �� �
a

� 	
þ ðTNDÞa ¼ 0: ð5Þ

10We refer to discretionary traders who do not exercise their flexibility as nondiscretionary

traders. In our model, nondiscretionary liquidity traders realize their trading requirements before

the market opens at time t ¼ 0�: This differs from the traditional view in the market microstructure

literature, where nondiscretionary liquidity traders realize their trading requirements in a particular

period after the market opens and are compelled to trade in the same period.
11The assumption of negligible waiting costs is reasonable in an intraday trading scenario where

the trading horizon is of the order of a few hours, at most. Essentially, we assume that a zero

discount rate applies over the trading horizon.
12Alternative assumptions about the arrival rate of nondiscretionary liquidity traders would

imply exogenously imposed excess liquidity trading in at least one period. The model can be

suitably altered to accommodate any given specification of nondiscretionary liquidity trader

behavior. However, we believe that there is no ex-ante motivation to justify examining alternative

specifications. Assuming a uniform arrival rate of nondiscretionary traders seems to be the most

innocuous specification.
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Since discretionary traders have to monitor the market from the very first
period, the decision to act as a discretionary trader or nondiscretionary trader
is made before the market opens. Hence q
; and therefore, al and ah are
completely determined before trading begins.

By pooling their trades in any chosen period, discretionary traders can save
(ah � al) on adverse selection commissions. The savings in adverse selection
commissions would be the same no matter which period they choose to
aggregate their trades. However, in a world with discrete prices, the savings in
DRC are subject to timing ability because DRC are time varying. Hence timing
matters. The only uncertainty is with respect to the realization of DRC over the
interval (0, d).

3.3.1. Discretionary traders’ timing strategy
As discussed in Section 3.2, current period DRC, is common knowledge at

the beginning of each period, but future period DRC are uncertain. Being risk
neutral, discretionary traders weigh the current period DRC with the expected
DRC upon deferring trades. Thus, the distribution of DRC in future periods
affects the timing strategy of discretionary traders.

Suppose DRC are uniformly distributed over (0, d). Consider a trading
horizon (m) of two periods. At the beginning of the first period, DRC for the
first period are known, but DRC for the second (and last) period are unknown.
Risk neutral discretionary traders can compare the current realized DRC with
the expected DRC upon deferring trades, which are equal to d=2: If the current
DRC are less than or equal to d=2; it makes sense to trade immediately. In
contrast, if the current DRC>d/2, it makes sense to defer trades to the second
period. Thus, the timing strategy involves a simple trading rule. In the first
period (of a two period horizon), the trading rule would be to trade in the
current period if DRCpd/2, otherwise to defer trades. We refer to the fraction
1
2 in d=2 as the cutoff level that describes the trading behavior of discretionary
traders in the first period. Note that the cutoff level indicates the expected DRC
from deferring trades.

In general (over an m-period trading horizon), the timing strategy would
involve a trading rule that employs a critical cutoff (expressed as a fraction of
the tick size) corresponding to each period. If the realized DRC is less than or
equal to that implied by the cutoff level (relevant for that period), discretionary
traders are better off trading in that period, as opposed to deferring trades.
Conversely, if the realized DRC is larger than that implied by the cutoff level, it
is better to defer trades to the next period.

Note that the cutoff for the last period has to be equal to 1, because
discretionary traders are forced to trade in this period (if they have deferred
trades until then). In conclusion, the trading rule therefore implies that
discretionary traders should trade in the first period that has a realized DRC
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less than or equal to the cutoff level (corresponding to that period). Such a
trading rule ensures minimization of expected DRC.13

Proposition 1. The timing strategy of discretionary traders can be described by a
set of optimal cutoffs (ða*

t ; 0oa*
t p1Þ), that is determined by recursively solving

Eq. (6) from t ¼ ðm� 1Þ; y; 1; using the end-game constraint a*
m ¼ 1: Discre-

tionary traders would find it optimal to trade in the first period that has a realized
DRC less than or equal to a*

t d:

a*
t ¼ zt : ztd ¼ Ftþ1ða*

tþ1 jDRCt ¼ ztdÞEfztþ1d j 0pztþ1pa*
tþ1;DRCt ¼ ztdg

þ ð1 � Ftþ1ða*
tþ1 jDRCt ¼ ztdÞÞ

Ftþ2ða*
tþ2 jDRCt ¼ ztdÞEfztþ2d j 0pztþ2pa*

tþ2;DRCt ¼ ztdg þ?

þ ð1 � Ftþ1ða*
tþ1 jDRCt ¼ ztdÞÞ?ð1 � Fm�1ða*

m�1 jDRCt ¼ ztdÞÞ

Fmða*
m jDRCm�1 ¼ zm�1dÞEfzmd j 0pzmpa*

m;DRCt ¼ ztdg; ð6Þ

where the realization DRCt in period t is equal to ztd; 0pzto1 and Ftð:jDRCt�1Þ
refers to the cumulative distribution function of the conditional distribution of
DRCt given DRCt�1).

Proof. Appendix B. &

Proposition 1 describes the timing strategy of discretionary traders. In
deciding whether to trade in the current period or to defer trading to the next
period, discretionary traders compare the current period realized DRC with the
expected DRC upon deferring trades. Eq. (6) presents this comparison at stage
t of the trading horizon of m periods. Note that the distribution of future
period DRC depends on the realized DRC in the current period. Hence Eq. (6)
deals with the conditional distribution of DRC. The optimal cutoffs can be
determined by solving Eq. (6) using a recursive backward dynamic program-
ming approach, where an end-game constraint (a*

m ¼ 1) applies.
The trading rule works as follows: If the realization of DRC1 in Period

1pa*
1 d; then discretionary traders would trade in Period 1, otherwise they

would defer their trades to the next period. Suppose discretionary traders
prefer to defer their trades and reach Period 2. If the realization of DRC2 in
Period 2pa*

2 d; then discretionary traders would trade in the Period 2,
otherwise they would defer their trades to the next period, and so on till they

13Note that discretionary traders would be interested in minimizing the expected execution costs

of (al þDRC). It turns out that minimizing expected DRC also ensures that al would be minimized.

This follows because q
 is increasing in the savings in execution costs, Sða*
1 ;y; a*

m; q* Þ; as

discussed later in Eq. (11). Furthermore, as shown in Eq. (10), Sða*
1 ;y; a*

m; q* Þ is inversely related

to discretionary trader’s expected DRC, E(DRC)D. Finally, since al is monotonically decreasing in

q
 [see Eqs. (4) and (5)], it follows that minimizing expected DRC ensures that al is also minimized.
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reach a period with DRC less than or equal to the cutoff relevant for that
period.

3.3.2. Ex-ante expected execution costs of discretionary traders
As stated in Assumption A5, liquidity traders make a strategic decision on

whether to act as discretionary traders or not, at time t ¼ �p: At this point in
time, the distribution of DRC is Uniform (0, d) because there is no information
available about the price process.14 Knowing the cutoffs a*

1 ;y; a*
m; one can

compute the ex-ante (at time t ¼ �p) expected DRC incurred by discretionary
traders [E(DRC)D]. Therefore,

EðDRCÞD ¼ a*
1 ða

*
1 d=2Þ þ ð1 � a*

1 Þa
*
2 ða

*
2 d=2Þ þ?

þ ð1 � a*
1 Þð1 � a*

2 Þ?ð1 � a*
m�1Þa

*
mða*

md=2Þ: ð7Þ

Given that discretionary traders incur adverse selection commissions (al;
which depends on q
), the expected per dollar execution costs of discretionary
liquidity traders (ECD) is given by

ECDða*
1 ;y; a*

m; q* Þ ¼ ½al þ EðDRCÞD	=P0: ð8Þ

3.3.3. Equilibrium amount of discretionary trading (q*)
To determine the equilibrium amount of discretionary traders (q
), we first

determine the savings in execution costs due to timing of trades. The
nondiscretionary traders who trade in (m� 1) regular periods expect to pay an
adverse selection commission of ah and, on average, d/2 in DRC.15 However, if

14As discussed in Appendix B, the distribution of DRC is given by the wrapped normal

distribution. Mardia (1972) shows that the wrapped normal distribution converges to the uniform

distribution when r ¼ exp½ð�1=2Þs2	 tends to zero, where s2 is the variance of the underlying

normal distribution. At time t ¼ �p; the relevant underlying normal variable is Sd over the time

interval (�p,0), whose variance approaches infinity. Hence the distribution of DRC in Period 1

through Period m will be uniform because the wrapped normal distribution converges to the

uniform distribution.
15 It might seem that DRC in the regular periods should vary over the interval (a
t d; d), otherwise

discretionary traders would pool their trades in such periods. However, this inference is incorrect.

NoteDRC depend on the location of the continuous-case ask price Acð¼ Pt�1 þ a
Þ on the real line.

Given Pt�1; the location of Ac depends on the equilibrium commission (a
), which depends on the

number of liquidity traders trading in a period. If discretionary traders are trading, the appropriate

continuous-case ask price is given by Ac ¼ Pt�1 þ al; whereas when only nondiscretionary traders

appear in the market, the continuous-case ask price is given by Ac ¼ Pt�1 þ ah: Hence,

discretionary traders defer their trades whenever, conditional on their trading, the continuous-

case ask price (by Ac ¼ Pt�1 þ al) is such that DRC lie in the interval (a
t d; d). Only

nondiscretionary traders would then trade, and it is quite possible that DRC are less than a
t d
because the continuous-case ask price would then be given by Ac ¼ Pt�1 þ ah: However,

discretionary traders cannot take advantage of this situation because if they trade, DRC would

lie in the interval (a
t d; d ). In general, DRC in a regular period, where only nondiscretionary traders

trade, would vary over (0, d ).
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they are lucky and realize their trading need in the period of concentrated
trading, their expected execution costs are equal to fal þ EðDRCÞDg; the same
as that of discretionary liquidity traders. Ex-ante, the probability of trading in
a regular period is ðm� 1Þ=m and the probability of trading in the period of
concentrated trading is (1=m). Thus, the expected (per dollar) execution costs
incurred by a nondiscretionary trader is given by

ECNDða*
1 ;y; a*

m; q* Þ ¼ ½ðm� 1Þ=m	ðah þ d=2Þ=P0

þ ð1=mÞ½al þ EðDRCÞD	=P0: ð9Þ

It follows that the (per dollar) savings in executions costs due to timing
of trades is given by Sða*

1 ;y; a*
m; q* Þ ¼ ECNDða*

1 ;y; a*
m; q* Þ � ECD

ða*
1 ;y; a*

m; q* Þ; as stated in

Sða*
1 ;y; a*

m; q* Þ ¼ ½ðm� 1Þ=m	½ðah � alÞ þ d=2 � EðDRCÞD	=P0: ð10Þ

Liquidity traders compare the savings in execution costs to their personal
monitoring costs. In equilibrium, q
 would be such that the q
 percentile
liquidity trader would be indifferent between acting as a discretionary or as a
nondiscretionary trader. In either case, he would incur identical total expected
(per dollar) transaction costs. In short, q
 would be such that savings in
execution cost from timing trades would be exactly offset by his personal
monitoring costs. Thus, Cðq* Þ ¼ Sða*

1 ;y; a*
m; q* Þ: Plugging the functional

form of CðqÞ; as defined in A5, we get

q* ¼ exp½�ff =Sða*
1 ;y; a*

m; q* Þgw	: ð11Þ

3.3.4. Equilibrium solution
Fig. 2 shows the pattern of liquidity trading in the m-period economy. In the

figure, the period of concentrated trading is Period s: Ex-ante, however, the
period of concentrated trading is unknown. Given a base price (P0),
discretionary traders choose the optimal cutoffs, a*

1 ;y; a*
m�1; by recursively

solving Eq. (6). The period of concentrated trading depends on the realization
of DRC in the m periods. The first period that has a realized DRC less than or
equal to the relevant cutoff for that period will be the period of concentrated
trading.

The optimal cutoffs determine the ex-ante expected DRC incurred by
discretionary traders, as described in Eq. (7) and the discretionary traders’
savings in execution costs, as described in Eq. (10). The equilibrium amount of
concentrated trading (q
) is then solved for, as shown in Eq. (11). Knowing q
;
the adverse selection commissions, al; and ah; are found using Eqs. (4) and (5),
respectively. The solution set is given by fa*

1 ;y; a*
m; q* ; ah; al;P0g; which

corresponds to a given base price, P0:
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3.4. Equilibrium transaction costs

We define the per dollar total transaction, TCðP0Þ; as follows:

TCðP0Þ ¼ ðm� 1Þ
ah þ d=2
P0

� �
TND þ

al þ EðDRCÞD
P0

� �
ðTND þ TDÞ

þ
Z q *

0

l TCðqÞ dq:

ð12Þ

In the above equation, the first term within the square brackets represents
the expected (per dollar) execution costs incurred by nondiscretionary traders

Fig. 2. A pictorial representation of the execution costs. The economy consists of m trading

periods. A fraction q
 (endogenously determined) of the total number of liquidity traders (lT)

choose to act as discretionary traders and the remaining fraction (1� q
) prefer to act as

nondiscretionary traders. Before the market opens, discretionary traders choose optimal cutoff level

a
t (0oa
to1) corresponding to each period t: They trade in the first period that has discreteness

related commissions ðDRCÞoa
t d ; where d is the tick size. If the period of concentrated trading

occurs in Period s, DRC vary over (0, a
s d) and the adverse selection related commission is equal to

al: In the remaining (m�1) regular periods, the adverse selection related commission is equal to ah
and DRC varies over the interval (0, d).
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in (m� 1) periods of regular trading, given that DRC are, on average, equal to
d/2. We explicitly factor in the depth of the market by including the number of
nondiscretionary traders (TND) incurring these commissions. Similarly, the
second term reflects the expected (per dollar) execution costs incurred by
liquidity traders in the period of concentrated trading. Finally, the last term
shows the cumulative monitoring costs incurred by all liquidity traders who act
as discretionary traders. It can be shown (see Appendix C) that the integration
of l TCðqÞ over the interval (0; q
) gives the expression: f lTGððw� 1Þ=wÞÞ
f1 � GAMMADIST ½ð�Lnðq
Þ	g; where Gð:Þ is the gamma function and
GAMMADIST is the cumulative distribution function of the standard gamma
distribution with parameter ½ðw� 1Þ=w	:

The expressions in the square bracket are normalized by the base price (P0).
This normalization is required to remove any spurious price effects. Thus, our
objective function is expressed on a per dollar basis. This (inverse) measure of
liquidity reflects both the spread (i.e., commission) and the depth in the market.
Note, in Eq. (12) the base price appears explicitly in the denominator, and
implicitly in ah; al; TD; TND (through q
 which depends on P0).

4. Numerical solution of the model

The model cannot be solved in closed-form. Therefore, we numerically solve
the model for reasonable parameter values. The numerical solution set
fa*

1 ;y; a*
m; q* ; ah; al;P0g is used to compute the value of the transaction cost

function TCðP0Þ: Repeating this exercise for different values of P0 generates the
functional form of TCðP0Þ: The optimal base price is the one that results in the
lowest transaction cost.

4.1. The optimal cutoffs

The first step in the numerical solution procedure is to solve Eq. (6) to
determine the optimal cutoffs, a*

1 ;y; a*
m: For these computations, we let the

number of trading periods (m) equal 10, the volatility parameter (k) equal 0.02,
and the tick size equal $0.125. A value of k ¼ 0:02 implies a standard deviation
of 2% (of the price level), which is consistent with observed daily standard
deviations.16 Appendix B develops the functional form of the conditional
distribution, Ftða*

t jDRCt�1 ¼ zt�1dÞ; and the expectation, Efztd j ztpa*
t ;

DRCt ¼ ztdg: These terms appear in Eq. (6). Table 2 shows the optimal
cutoffs at different base prices varying from $1/2 to $100. The optimal cutoffs

16Typical values of volatility of stocks lie in the range of 20–40% per annum, or equivalently

1.046–2.093% on a daily basis. Thus our choice of the parameter value is consistent with the daily

standard deviations observed on stock exchanges.
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depend on the base price because s2 (the variance of d) depends on the base
price (s ¼ kP0).

Consider the case when the base price is $50. The cutoff for the first period is
0.1502. This means that discretionary traders would find it optimal to trade in
the first period only if the realized DRC in Period 1 is less than or equal to
0.1502d=$0.01877 (assuming a tick size of $0.125). Otherwise, they would
defer their trades to the next period. The last period cutoff is always 1, since
discretionary are constrained to trade within the trading horizon (m=10
periods). It turns out that the optimal cutoffs are not very sensitive to the base
price, except at the very low base price of about $1.

Next, we apply the optimal cutoffs to Eq. (7) and determine discretionary
traders’ ex-ante expectedDRC at each base price. This computation appears in the
bottom row of Table 2. For a base price of $50, the E(DRC)D=$0.0174, which is
significantly lower than the nondiscretionary trader’s expected DRC of $0.0625.

4.2. The transaction cost function, TC(P0)

To construct the transaction cost function, we must first solve for the
remaining endogenous variables in the solution set, namely, q
; ah; and al;
corresponding to each base price level (P0). For convenience, we assume that

Table 2

The optimal cutoffs

This table shows the optimal cutoffs (at
) and discretionary traders’ ex-ante expected discreteness

related commissions [E(DRC)D] using a dynamic optimization procedure. The problem has been

solved for m=10 periods for different base prices (P0). The base price level affects the standard

deviation of the private information (s =kP0), where k is the volatility parameter. The m distinct

cutoffs (expressed as a fraction of the tick size) appear in the rows. We assume that the volatility

parameter (k) is equal to 0.02 and the tick size (d) is equal to $0.125.

Cutoff (at
) Base price (P0)

$1/2 $1 $2 $10 $50 $100

a1* 0.3839 0.1536 0.1492 0.1502 0.1502 0.1499

a2* 0.4020 0.1763 0.1629 0.1636 0.1635 0.1631

a3* 0.4176 0.2099 0.1798 0.1797 0.1797 0.1792

a4* 0.4318 0.2629 0.2011 0.1996 0.1996 0.1992

a5* 0.4450 0.3281 0.2291 0.2249 0.2249 0.2246

a6* 0.4579 0.3842 0.2675 0.2583 0.2583 0.2581

a7* 0.4708 0.4285 0.3224 0.3047 0.3047 0.3046

a8* 0.4843 0.4653 0.4000 0.3750 0.3750 0.3750

a9* 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

a10* 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

E(DRC)D 0.0256 0.0183 0.0174 0.0174 0.0174 0.0174
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the total trading population (T) is equal to 200 (the results are invariant to the
choice of T) and that the fraction of liquidity traders (l) is equal to 60% or 0.6.
The other key parameters are the monitoring cost parameters (f and w). They
define the shape of the monitoring cost schedule faced by liquidity traders. We
solve for q
; ah; and al; at different base prices (P0) using the following
parameter values: d=$0.125, k=2%, m=10, T=200, l=0.6, and ðf ;wÞ �
ð0:0109; 1:6Þ: We find that the resulting transaction cost function, TCðP0Þ;
exhibits a local interior minimum at a base price of $53.

Table 3 presents the numerical solutions. Given l ¼ 0:6; the number of
uninformed liquidity traders (lT) is equal to 120 and the remaining traders are
informed traders (80). Consider a base price of $10, as shown in the fourth row
of Table 3. First, the fraction of discretionary trading (q
) is equal to 0.7169
(fourth column), which implies that 72% of the 120 liquidity traders act as

Table 3

Equilibrium characteristics

This table shows the numerical solution of the model at different base prices. P0� base price,

q
 � fraction of liquidity traders who choose to act as discretionary traders, ah� adverse selection

related commissions in a regular period, al � adverse selection related commissions in the period of

concentrated trading, TD � number of discretionary traders, and TND� number of nondiscre-

tionary traders in each period. We assume that, in a continuum of increasing costs, the qth

percentile liquidity traders faces a monitoring cost, C(q)=f/[�ln(q)]1/w, where f>0 and w>1. The

parameters defining the numerical solution are as follows: (i) l: the fraction of liquidity traders in

the trading population (T), (ii) k: the volatility parameter, which specifies the standard deviation of

the private information (d) in s(P0)=kP0, where P0 is the base price, (iii) m: the number of periods,

(iv) d: the tick size, and (v) ( f, w): the monitoring cost parameter pair that defines the monitoring

cost schedule. The parameters chosen for the simulation are (i) l=0.6, T=200, (ii) k=0.02,

(iii) m=10, (iv) d=$0.125, and (v) f=0.0109, w=1.6.

P0 ah/P0 al/P0 q* TD TND

0.5 0.0398 0.0042 0.9709 116.51 0.35

1 0.0362 0.0042 0.9486 113.83 0.62

2 0.0319 0.0044 0.9020 108.25 1.18

10 0.0247 0.0051 0.7169 86.03 3.40

20 0.0227 0.0055 0.6258 75.10 4.49

30 0.0218 0.0058 0.5745 68.94 5.11

40 0.0213 0.0061 0.5389 64.67 5.53

50 0.0209 0.0062 0.5115 61.37 5.86

52 0.0208 0.0063 0.5066 60.79 5.92

53 0.0208 0.0063 0.5042 60.50 5.95

54 0.0208 0.0063 0.5019 60.22 5.98

60 0.0206 0.0064 0.4885 58.62 6.14

70 0.0203 0.0066 0.4680 56.16 6.38

80 0.0200 0.0067 0.4485 53.82 6.62

90 0.0198 0.0069 0.4283 51.39 6.86

100 0.0189 0.0077 0.3453 41.43 7.86
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discretionary traders (=86.03, as shown in the fifth column) while the
remaining 28% act as nondiscretionary traders.17 Therefore, in each one of the
m (=10) periods, 2.8% (=3.40, as shown in the last column) act as
nondiscretionary liquidity traders. The (per dollar) adverse selection commis-
sion in the period of concentrated trading is 0.0051 (third column) whereas the
(per dollar) adverse selection commission in the other nine periods is 0.0247
(second column).

In contrast, if the base price is equal to $100, as shown in the last row of
the table, a smaller fraction of the liquidity traders act as discretionary
traders (q
=35%). The (per dollar) adverse selection commission is 0.0077
in the period of concentrated trading and 0.0189 in the remaining regular
periods.

Besides adverse selection commissions, liquidity traders also incur DRC of
$0.0625, on average, in a regular period and much lower DRC (as shown in the
last row of Table 2) in the period of concentrated trading. Finally,
discretionary liquidity traders also incur monitoring costs. The total per
dollar expected transaction costs (incurred by all liquidity traders) can be
computed for a given base price (P0), as shown in Eq. (12). Table 4 shows
the total equilibrium expected transaction costs (last column) at various base
prices and Fig. 3 graphs the transaction costs as they vary with the base
price.

It can be seen both from Table 4 and Fig. 3 that the transaction cost function
½TCðP0Þ	 can be minimized by choosing an appropriate base price (P0). In this
case, the optimal base price is $53 and the (per-dollar) transaction costs
incurred at this base price are 3.1373. In contrast, had the base price been $100
(last row), the (per dollar) transaction cost would have been 3.1923. This
translates into a saving of 1.75%.18

We are also interested in finding out whether the optimal price is
a global minimum or not. As the base price increases above $53, the
transaction cost function increases monotonically. No feasible solution
exists beyond a base price of $100. Therefore, the minimum at $53 is
a global minimum. In general, one cannot be sure whether the optimal
price is a global minimum or not because we are employing numerical

17For convenience, we allow for fractional number of liquidity traders.
18 It might seem as if there is not much difference in transaction costs at the optimal price level of

$53, where TC(P0)=3.1373, and a high price level of $100, where TC(P0)=3.1923. Note that the

expected transaction cost is a per dollar measure. This implies that an investment of $100 when the

base price is $53 results in an absolute cost of 3.1373� 100=$313.73. In contrast, had the base

price been $100, the absolute transaction costs would have been 3.1923� 100=$319.23. Thus,

holding the base price at $53 results in a saving of $5.50 (=1.75% of $313.73) for 120 liquidity

traders.
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techniques to solve the model. However, given an upper bound on the
feasible set of prices that a firm can consider, even a local minimum over a
reasonable range of prices would suffice.19

Table 4

Optimal price tradeoffs

This table shows total (expected) transaction costs incurred by all liquidity traders as a function of

the base price. P0� base price, q 
 � fraction of liquidity traders who choose to act as discretionary

traders, ah� adverse selection related commissions in a regular period, al� adverse selection related

commissions in the period of concentrated trading, TD� number of discretionary traders, and

TND� number of nondiscretionary traders in each period. We assume that, in a continuum of

increasing costs, the qth percentile liquidity traders faces a monitoring cost, C(q)=f/[�ln(q)]1/w,

where f>0 and w>1. The parameters defining the numerical solution are as follows: (i) l: the

fraction of liquidity traders in the trading population (T), (ii) k: the volatility parameter, which

specifies the standard deviation of the private information (d) in s(P0)=kP0, where P0 is the base

price, (iii) m: the number of periods, (iv) d: the tick size, and (v) ( f, w): the monitoring cost

parameter pair that defines the monitoring cost schedule. The parameters chosen for the simulation

are (i) l=0.6, T=200, (ii) k=0.02, (iii) m=10, (iv) d=$0.125, and (v) f=0.0109, w=1.6.

(Per dollar) expected transaction cost components

Base price (P0) Adverse

selection

Discreteness

related

Monitoring

cost

Total (per dollar)

transaction costs

0.5 0.6109 6.3778 2.3976 9.3864

1 0.6844 2.4413 2.2569 5.3826

2 0.8163 1.2813 2.0725 4.1701

10 1.2093 0.3463 1.7195 3.2752

20 1.3597 0.1954 1.6207 3.1757

30 1.4357 0.1386 1.5751 3.1494

40 1.4850 0.1083 1.5469 3.1402

50 1.5215 0.0893 1.5267 3.1375

52 1.5278 0.0863 1.5232 3.1374

53 1.5309 0.0849 1.5215 3.1373

54 1.5339 0.0836 1.5199 3.1374

60 1.5509 0.0763 1.5107 3.1379

70 1.5762 0.0668 1.4971 3.1402

80 1.5996 0.0596 1.4848 3.1441

90 1.6233 0.0541 1.4725 3.1499

100 1.7123 0.0528 1.4272 3.1923

19Our only concern is that the global minimum could be a corner solution because TC(P0) may

go to 0 when P0 approaches infinity. We have two comments to make. First the stock price level is

bounded by the economic value of the firm (there must be at least one share), which rules out

infinite values for P0. Second, note that if market makers are risk averse or face wealth constraints,

the breakeven commission charged by the market maker would increase at a faster rate than

predicted by our model, which has risk neutral market makers. In such a setting, TC(P0) would not

go to zero as P0 approaches infinity, and an interior global optimum would be realized. We can,

therefore, focus on the local minimum and interpret our model under the restriction that the base

price has to be less than some upper bound.
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4.3. Tradeoffs in the optimal price

The key feature of the model is that the base price (P0) affects the economic
significance of savings in execution costs accruing to potential discretionary
traders. While the base price does not affect the (per dollar) adverse selection
commissions, it reduces the economic significance of the fixed cost component
– discreteness related commissions. Thus, (per dollar) execution costs depend
on the base price (P0). And, therefore, the amount of discretionary trading (q
)
depends on the base price (P0). At lower base prices, there is greater
discretionary trading because of the economic significance of DRC. Con-
versely, there is lesser discretionary trading at higher base prices. This
dependence of the distribution of trades (across time) on the base price, in turn,
affects total transaction costs incurred by traders across all the periods. In
other words, total transaction costs depend on the base price (P0).

To get a better insight of the tradeoffs in the optimal price, we rearrange
the first two terms of the transaction cost function described in Eq. (12) as
follows:

TCðP0Þ ¼ ½ðm� 1ÞahTND þ alðTD þ TNDÞ	=P0

þ ½ðm� 1Þðd=2ÞTND þ EðDRCÞDðTD þ TNDÞ	=P0

þ f ðlTÞGððw� 1Þ=wÞf1 � GAMMADIST ½�Lnðq* Þ	g ð13Þ

Fig. 3. The transaction costs function [TC(P0)] is shown as a function of the base price P0. The

transaction costs are made up of the sum of adverse selection related commissions and discreteness

related commissions incurred by all liquidity traders in all periods as well as the (cumulative)

monitoring costs incurred by all discretionary liquidity traders. At a base price of approximately

$53, the transaction costs are minimized.
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¼ sum of adverse selection commissions in m periods

þ sum of DRC inm periods

þ ðcummulativeÞ monitoring costs:

TCðP0Þ; as described in Eq. (13) consists of three terms expressed in per
dollar amounts. The first term is the sum total of (per dollar) adverse selection
commissions paid by all liquidity traders in all m periods (for clarity, we refer
to the sum total of adverse selection commissions as the adverse selection
component). The second term is the sum total of (per dollar) DRC incurred by
all liquidity traders in all m periods (again, for clarity, we refer to this as the
DRC component). Finally, the third term indicates the (cumulative) monitoring
costs incurred by discretionary liquidity traders (see Appendix C for a
derivation of the monitoring cost component).

Table 4 shows the three components at different base prices. It can be seen
(in the second column of Table 4) that the adverse selection component
increases as the base price increases, whereas the DRC component (third
column) and the monitoring cost component (fourth column) decrease with the
base price. The optimal base price of $53 strikes the right balance between
these components.

The result can be explained with the help of Table 3. As the base price
increases, fewer liquidity traders act as discretionary traders (q
 is lower)
because the economic significance of savings in DRC is lower. The reduction in
discretionary trading has the following effects. First, adverse selection
commissions in the period of concentrated trading increase (third column in
Table 3). Second, fewer traders benefit from trading in the period of
concentrated trading (fifth column in Table 3). Third, more liquidity traders
trade in regular periods (last column in Table 3). Fourth, the adverse selection
commissions in the regular period decrease (second column in Table 3).
However, they are still higher than in the period of concentrated trading. The
net effect is that the adverse selection component of TCðP0Þ increases with the
base price (P0).

Now consider the DRC component of TCðP0Þ: Less concentrated trading at
higher base prices implies that fewer liquidity traders incur the low DRC in the
period of concentrated trading. Also, more liquidity traders trade in the other
periods where DRC is, on average, higher. Therefore, both effects work toward
increasing (dollar) DRC. However, (dollar) DRC does not increase as fast as
the base price and the (per dollar) DRC component decreases in the base price,
unlike the adverse selection component.

Finally, the monitoring cost component decreases with the price level
because there is less concentrated trading at higher price levels and fewer
liquidity traders incur monitoring costs. There exists a tradeoff between an
increasing adverse selection cost component and decreasing DRC and
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monitoring cost components of the transaction cost function. This tradeoff
results in an interior optimum.

The intuition of the model can also be explained as follows. A lower base
price induces more liquidity traders to act as discretionary traders. This is
beneficial because greater discretionary trading results in a lower adverse
selection component. However, a lower base price also has adverse cost
implications. First, the DRC component increases and higher (cumulative)
monitoring costs are incurred because more liquidity traders act as
discretionary traders. The optimal price, which results in an optimal amount
of discretionary trading, is the one equating the marginal adverse selection
component on the one hand to the sum of the marginal DRC and the marginal
monitoring components on the other hand.20

4.4. Robustness checks

To check the robustness of our results, we numerically solved the model for
various parameter values.21 The basic parameters are the liquidity parameter
(l), the volatility parameter (k), the trading horizon (m), and the tick size (d).
Given specific values for l; k; m; and d; we find that the existence of an interior
local optimum of the transaction cost function depends on monitoring cost
parameter pair ( f ; w). We show that by appropriately choosing values for
( f ; w), one can demonstrate the existence of an interior (local) optimal price
for a wide range of reasonable parameter values for fl; k;m; dg:22

The results are presented in Table 5. In Panel A of Table 5, we consider two
polar cases of the liquidity parameter (l). Consider the case where l ¼ 0:1: By
appropriately choosing ðf ; wÞ � ð0:0119; 2:1Þ; we show the existence of an
optimal price ($32) when l is as low as 0.1. On the other hand, by choosing
ðf ; wÞ � ð0:0065; 2:2Þ; an optimal price exists ($71) when l is as high as 0.9.

20A final point is in order. At first glance, it might seem that the results of our model could be

obtained by explicitly introducing the asset price level and endogenizing discretionary trading in the

Admati and Pfleiderer (1989) model. However, our model has an additional feature – price

discreteness. The exchange-mandated discrete pricing restriction plays an important role in our

model. To see this, observe Eq. (10) that describes the savings in execution costs. Note that in the

absence of discrete prices, savings in executions costs arise purely because of savings in adverse

selection commissions, ½ðah � alÞ	=P0; and not because of savings in DRC, ½d=2 � EðDRCÞD	=P0: As

shown in Appendix A, the saving, ½ðah � alÞ	=P0; is independent of the price level. Therefore, q
;
which is a function of the savings, is independent of the base price in this set up [see Eq. (11)]. As a

consequence, in a model without discrete prices, the total transaction cost function would be

independent of the price level. Unlike our model, there would be no optimal price.
21We find that, for some parameter sets, there exist multiple solutions for the endogenous

variables (ah; al; and q
), depending on the initial seed values. To obtain the results in the paper, use

initial seed values close to the given solution of al and ah:
22For some parameter sets, the transaction cost function, TCðP0Þ; is monotonically decreasing in

P0, and no interior optimal price exists.
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Similarly, in Panel B of Table 5, we demonstrate the existence of an optimal
price for two polar cases of the volatility parameter. For k=0.2%, we let
ðf ; wÞ � ð0:0015; 1:5Þ and show that an optimal price exists ($98). For k=2%,
we let ðf ; wÞ � ð0:0105; 1:6Þ and show that the optimal price is $120. Panel C of
Table 5 shows how the optimal price changes as the trading horizon (m)
increases from 10 to 11. We find that the optimal price increases with the
trading horizon. Finally, we demonstrate the interior optimal price for two
different tick size regimes in Panel D of Table 5.

4.5. Optimal price behavior

Fig. 4 illustrates the results of numerical solutions. Panel A shows that the
optimal price is increasing in the volatility parameter (k). Panels B, C, and D
show that the optimal price is decreasing in the liquidity parameter (l), and the
monitoring cost parameters, f and w; respectively. Finally, Panel E shows that
the optimal price is increasing in the tick size (d).

The relationship between the optimal price and the tick size is linear. Table 6
shows the optimal price for different tick sizes and the consequent effective tick

Table 5

Robustness checks

This table presents the optimal base price for different parameter values. We assume that, in a

continuum of increasing costs, the qth percentile liquidity traders faces a monitoring cost, C(q)

=f/[�ln(q)]1/w, where f>0 and w>1. The parameters defining the numerical solution are as

follows: (i) l: the fraction of liquidity traders in the trading population (T), (ii) k: the volatility

parameter, which specifies the standard deviation of the private information (d) in s(P0)=kP0,

where P0 is the base price, (iii) m: the number of periods, (iv) d: the tick size, and (v) ( f, w): the

monitoring cost parameter pair that defines the monitoring cost schedule. T is assumed to be equal

to 200 in all cases.

Panel A. Liquidity parameter (l)
l=0.1 ð f ;wÞ � ð0:0119; 2:1Þ ðm; k; dÞ � ð10; 0:02; 0:125Þ P0

*=32

l=0.9 ð f ;wÞ � ð0:0065; 2:2Þ ðm; k; dÞ � ð10; 0:02; 0:125Þ P0
*=71

Panel B. Volatility parameter (k)

k=0.002 ð f ;wÞ � ð0:0015; 1:5Þ ðm; l; dÞ � ð10; 0:60; 0:125Þ P0
*=98

k=0.02 ð f ;wÞ � ð0:0105; 1:6Þ ðm; l; dÞ � ð10; 0:60; 0:125Þ P0
*=120

Panel C. Trading horizon (m)

m=10 ð f ;wÞ � ð0:0105; 1:6Þ ðl; k; dÞ � ð0:70; 0:02; 0:125Þ P0
*=35

m=11 ð f ;wÞ � ð0:0105; 1:6Þ ðl; k; dÞ � ð0:70; 0:02; 0:125Þ P0
*=72

Panel D. Tick size (d)

d=$0.0625 ð f ;wÞ � ð0:0105; 1:6Þ ðm; k; lÞ � ð10; 0:02; 0:60Þ P0
*=60

d=$0.125 ð f ;wÞ � ð0:0105; 1:6Þ ðm; k; lÞ � ð10; 0:02; 0:60Þ P0
*=120
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size (ratio of tick size to price). It can be seen that the effective tick size stays the
same in all cases. In other words, given a set of parameters (other than the tick
size), there exists an optimal effective tick size that minimizes transaction costs.
As the tick size changes, the optimal price also changes proportionately,
resulting in the same effective tick size.

What really matters is the effective tick size. In the U.S., because the tick size
is fixed across all price levels (barring stock prices below $1), the optimal
effective tick size can be transformed into an equivalent optimal price level.
Furthermore, one can also interpret this model in terms of an optimal amount

Fig. 4. The optimal price behavior. Panels A–E describe how the optimal price changes as one of

the exogenous parameter changes in value. The optimal price is increasing in the volatility

parameter (k), decreasing in the liquidity parameter (l), monitoring cost parameters ( f, w), and

increasing in the tick size (d). Note that the relationship between the optimal price and the tick size

is linear.
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of discretionary trading (q
).23 The optimal effective tick size induces an
optimal amount of discretionary trading. The last two columns show that the
equilibrium amount of discretionary trading (q
) and the minimized transac-
tion cost (at the optimal price) are the same for all cases.

5. Empirical implications and evidence

Our theory is consistent with existing empirical evidence but it also
leads to new empirical implications. We contrast the predictions of our
theory with the predictions of the popular hypothesis, which states that splits
allow a larger set of stockholders to buy round lots, thereby lowering the
commissions paid and thus increasing the firms’ stockholders base. We start by
presenting empirical evidence consistent with both our theory and the popular
hypothesis. We then present empirical evidence consistent with our model,
but inconsistent with the popular hypothesis. Table 7 presents a list of
empirical implications of our model and the popular hypothesis and the related
evidence.

Table 6

Tick size and optimal price

This table shows the optimal price behavior as the tick size changes. P0� base price, q
� fraction

of liquidity traders who choose to act as discretionary traders. We assume that, in a continuum of

increasing costs, the qth percentile liquidity traders faces a monitoring cost, C(q)=f/[�ln(q)]1/w,

where f>0 and w>1. The parameters defining the numerical solution are as follows: (i) l: the

fraction of liquidity traders in the trading population (T), (ii) k: the volatility parameter, which

specifies the standard deviation of the private information (d) in s(P0)=kP0, where P0 is the base

price, (iii) m: the number of periods, (iv) d: the tick size, and (v) ( f, w): the monitoring cost

parameter pair that defines the monitoring cost schedule. The parameters chosen for the simulation

are: (i) l=0.6, T=200, (ii) k=0.02, (iii) m=10, and (iv) f=0.0105, w=1.6.

Tick

size (d)

Optimal

price (P0
*)

Optimal

effective tick (d/P0
*)

Optimal amount

of discretionary

trading (q*)

Total (per dollar)

minimized

transaction

cost [TC(P0
*)]

0.0625 60 0.0010 0.5183 3.0249

0.0750 72 0.0010 0.5183 3.0249

0.0875 84 0.0010 0.5183 3.0249

0.1000 96 0.0010 0.5183 3.0249

0.1125 108 0.0010 0.5183 3.0249

23Although q
 is endogenously determined, it is not a choice variable like the tick size or the base

price.
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5.1. Evidence consistent with our model and the popular hypothesis

Our model and the popular hypothesis predict that, other things constant,
significant increases in stock price should precede stock splits. Both the theory and
the hypothesis imply that announcements of splits would lead to positive stock
market response.24 Empirical evidence consistent with this implication has been
documented in Fama et al. (1969). Positive announcement effects are documented
in Grinblatt et al. (1984), and Eades et al. (1984). We turn now to present evidence
consistent with our model and unrelated to the popular hypothesis.

5.2. Stock distributions and the minimum tick size

The pattern of stock distributions varies significantly between the U.S. and
Japan. Relative to Japanese firms, U.S. corporate managers seem to split their

Table 7

Empirical implications

This table presents a list of empirical implications and corresponding evidence of our theory and

the popular hypothesis of stock splits.a

Empirical implications

Our theory Popular

hypothesis

Evidence

Stock price before the split Increase Increase Increase (Fama et al., 1969)

Announcement effects Positive Positive Positive (Grinblatt et al., 1984)

Price level in U.S. Constant Constant Constant (Angel, 1997)

Frequency of splits in Japan

(relative to U.S.)

Lower The same Lower (Section 5.2)

Price level in Japan Increase

with time

Constant Increase with time

(Section 5.3)

Concentration of

trades and price level

Negative

relationship

is possible

No relationship Negative relationship

(Section 5.4)

Concentration of trades

after a split

Higher The same Higher (Anshuman and

Goyal, 2001)

Stock return variability Higher The same Higher (Ohlson and

Penman, 1985)

aThe popular hypothesis states that firms split their stocks to enable investors with binding

wealth constraints to buy round lots; thereby reducing their transaction costs. By doing that the

firm increases its stockholders’ base.

24Note, this conclusion depends on the extent to which the market is surprised by the firm’s

decision to split. This situation can arise if (i) the firm is more knowledgeable about the

composition of liquidity traders, (ii) the firm has a better estimate of the costs of implementing a

split, and (iii) the firm (as compared to the market) can better anticipate changes in the premium

associated with its own stock’s liquidity. Under such circumstances, market participants would not

be able to predict with certainty the timing or the magnitude of the split.

V.R. Anshuman, A. Kalay / Journal of Financial Markets 5 (2002) 83–125112



stocks much more frequently. Our model can help explain this puzzling
difference by examining the minimum price variation rules in Japan. The
minimum tick size is constant only over a range of stock prices and increases as
the level of the stock price increases. For instance, the tick size is 1 yen for
stock prices up to 2000 yen, 5 yen for stock prices in the 2000–3000 yen range,
10 yen for stock prices in the 3000–30,000 yen range, 50 yen for stock prices in
the 30,000–50,000 yen range, and so on. The effective tick size varies over the
interval (0.0003, 0.0100) over all price levels. In contrast to the U.S., the
effective tick size stays bounded within an interval and does not monotonically
decrease with the stock price level. Our theory predicts that Japanese firms can
allow the stock price level to drift without being too concerned about moving
too far away from an optimal effective tick size. Unlike the U.S., Japanese
firms need not maintain constant nominal prices. We, therefore, expect them to
split their stocks less frequently than U.S. firms.

Fig. 5 (Panel A) displays the relative occurrence of stock dividends and splits
in the U.S. during the period 1985–1999. The data used in this figure has been
derived from the NYSE Fact Book (1994, 1999). There were a total of 2644
distributions during this period. Among these distributions, there were 362
(about 14%) distributions of size less than 25% whereas 2282 (about 86%)
distributions qualified as stock splits. 1399 (about 53%) of the distributions
were of size greater than 100%. During this period, U.S. firms have employed a
greater proportion of stock splits as compared to stock dividends.

Fig. 5 (Panel B) presents similar information for the Japanese stock markets
during the eight-year period 1983–1990. There were approximately 2982 stock
distributions. Interestingly, the average split factor is only 17% (the minimum
is 1%, and the maximum is 50%). There were 2799 distributions (about 94%)
of size less than 25% and zero distributions of size greater than 100%. More
importantly, only 183 distributions (about 6%) fell under the category of stock
splits. In Japan, stock dividends seem to be much more prevalent than stock
splits.25

5.3. Average stock price

Because the tick size is fixed in nominal terms at $0.125, U.S. firms wishing
to maintain a constant optimal (effective) tick size must keep their nominal
stock price constant. Splits and reverse splits can be used to achieve this
outcome. Indeed the empirical evidence indicates that, in spite of inflation,
positive real interest rates, and significant risk premiums, the average nominal
stock price in the U.S. during the last 50 years has been almost constant. Angel
(1997) presents empirical evidence, which shows that the average share price on

25One must also note that institutional differences between the U.S. and Japan regarding stock

distributions might provide an alternative explanation of the results reported here.
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the NYSE has changed from $39.86 in 1951 to $37.27 in 1991. The average
share price on the NYSE has mostly hovered very close to the $40 mark during
the period 1951–1991.

As mentioned above, Japanese firms, in contrast, can maintain a long-run
stable effective tick size even in the presence of rapid stock price increases.
Thus, Japanese firms need not maintain constant nominal stock prices to attain
their optimal effective tick size. In the presence of positive inflation, real
interest rates, and positive risk premiums, one should expect to see a rising
trend in the average stock price over an extended period of time. The evidence
on the distribution of stock prices on the first section of the Tokyo Stock
Exchange over the period 1950–1990 is consistent with this prediction. Ide
(1994) reports that the percentage of stocks with market value less than 500 yen
has decreased from 99% in 1950 to about 8% in 1990. During the same period
the percentage of stocks between 1000 and 2000 yen has risen from zero to 31%
and the percentage of stocks above 2000 yen has increased from zero to 17%.

Fig. 5. Stock distributions in the U.S. and Japan. Panels A and B show the histogram of stock

distributions in the U.S. (1985–1999) and Japan (1983–1990), respectively. The proportion of stock

splits to stock dividends in Japan is much lower than in the U.S. [Source: Panel A has been

constructed from data appearing in NYSE Fact Book (1994, 1999) and Panel B has been

constructed from data appearing in Ide (1994).]
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This rising trend is also apparent from the increase in the average share price
from 74 yen in 1950 to 1577.50 yen in 1990.

5.4. Coefficient of variation of per period trading volume and price levels

Our model implies that different firms would maintain their stock at different
optimal levels depending on the relevant values of the parameter set
fl; k; m; d; f ; wg: Interestingly, an optimal price is also associated with an
equilibrium amount of discretionary trading (q
). Therefore, different firms
(preferring different optimal prices) would experience differing degrees of
discretionary trading (or concentrated trading), depending on their parameter
values.

In this section we empirically examine the cross-sectional relationship
between price levels of firms and the degree of concentrated trading in their
stock. For this purpose, we study a sample of intraday transaction data for
2173 stocks trading on the NYSE during August 1993. The raw data consist of
time-stamped transactions as well as quote data obtained from the TAQ data
set. For transactions, price and volume data are available, while for quotes, bid
and ask quotes are available. To allow for a homogenous market regime, the
opening and closing sessions of trading have not been used in our empirical
tests. Thus, the sample consists of data from 22 trading days between
10:00 a.m. and 4:00 p.m.

For each stock, we computed the average transaction price (PRICE) based
on all transactions for that stock in the 22-day trading period. PRICE
represents the stock price level. For the entire sample of stocks, PRICE had a
mean of $27.90, a minimum value of $0.091825, and a maximum value of
$6830.49.

For our sample data on the NYSE, the tick size is equal to $1/16 for stocks
trading between $0.25 and $1.00, and further reduces to $1/32 for stocks priced
below $0.25. We excluded transaction data for all stocks that had PRICE less
than or equal to one dollar in order to restrict our test to a single tick size.
Furthermore, we also excluded all stocks that had less than (or equal to) 100
transactions over the entire sample period. After these exclusions, our final
sample had 1796 stocks.

For each stock in the sample, we aggregated trading volume over 5-, 15-, 30-,
and 60-minute intervals. Over 22 trading days, aggregation of 5-minute trading
volume results in 1584 observations (22 days� 6 hours� 12 5-minute intervals)
for each stock. Similarly, each stock has 528 15-minute trading volume
observations, 264 30-minute observations, and 132 60-minute observations.
VSTD denotes the standard deviation of the volume series of a stock. We ran

a regression of VSTD on PRICE. Because VSTDmay be higher for stocks with
higher average trading volume, we added VMEAN as an independent variable
in the regression, where VMEAN is the mean of the aggregated volume of the
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stock in question. The results of this regression are reported in Table 8. The
first four columns show the results of the regression where volume is
aggregated every 5, 15, 30, and 60minutes, respectively. The evidence presented
here indicates that volatility of aggregated volume is negatively related to the
price level. Higher priced stocks have a smoother volume of trade.26 To check
for multicollinearity, we computed the correlation between PRICE and
VMEAN and found it to be statistically insignificant. The Pearson correlation
is equal to �0.0439 (p-value=0.0406), which indicates that the regression
specification does not suffer from multicollinearity.

Table 8 also presents results associated with an alternative proxy of the
degree of concentrated trading, the Herfindahl Index. It is computed as
follows. If V05i denotes the trading volume for a stock in a particular 5-minute
trading period i; and V05SUM denotes the total trading volume for that stock
over the entire sample period, then the Herfindahl Index (HERF) is given by
Si(V05i/V05SUM)2. The Herfindahl indices for 15-, 30-, and 60-minute
aggregated volume data are constructed in a similar manner. Table 8 shows
that the Herfindahl Index is (significantly) negatively related to the stock price
level. These results imply that the volume series of higher priced stocks is
smoother than that of lower priced stocks.

Next we investigate whether an inverse relationship between price level and
the degree of concentrated trading is possible in the context of our model. To
measure the degree of concentrated trading, we note that the per period trading
volume in the m periods is not constant because the trading volume increases in
the period of concentrated trading. We can show that the mean and standard
deviation of per period (expected) trading volume is ½lT=mþ ð1 � lÞT 	 and
ð1=mÞ0:5½q
lT 	; respectively.27 It follows that the coefficient of variation, which
is defined as the ratio of the standard deviation to the mean, is given by

26 In an earlier version of the paper we used intraday transaction data from 42 trading days

during the months of March and April, 1985. We found very similar results to that reported in

Table 8.
27The m trading periods can be classified into (m� 1) regular periods and one period of

concentrated trading. In a regular period only nondiscretionary liquidity trading occurs along with

informed trading. In contrast, in the period of concentrated trading, both nondiscretionary and

discretionary liquidity trading occurs along with informed trading. The per period trading volume

is therefore not constant across all periods, as shown in Fig. 2. Trading volume in a regular period

is equal to ð1 � q
ÞlT=m of nondiscretionary trades and ð1� lÞT of informed trades. In contrast,

trading volume in the period of concentrated trading is equal to q
lT of discretionary trades,

ð1� q
ÞlT=m of nondiscretionary trades, and ð1� lÞT of informed trades. The mean of per period

trading volume in (m� 1) regular periods and one period of concentrated trading is given by

½ðm� 1Þ=m	½ð1 � q
ÞlT=mþ ð1 � lÞT 	 þ ð1=mÞ ½q
lT þ ð1� q
ÞlT=mþ ð1� lÞT 	; which simplifies

to ½lT=mþ ð1� lÞT 	: The variance of per period trading volume is given by ð1=ðm� 1ÞÞ½ðm� 1Þ
f½ð1� q
ÞlT=mþ ð1� lÞT 	 � ½lT=mþ ð1� lÞT 	g2 þ f½q
lT þ ð1� q
ÞlT=mþ ð1� lÞT 	�½lT=m
þð1� lÞT 	g2	; which simplifies to ð1=mÞ ½q
lT 	2: It follows that the standard deviation is ð1=mÞ0:5

½q
lT 	 and the coefficient of per period trading volume is given by m0:5½q
l	=½lþ ð1 � lÞm	:

V.R. Anshuman, A. Kalay / Journal of Financial Markets 5 (2002) 83–125116



Table 8

Concentration of trading volume

This table shows the results of the following regressions:

VSTD ¼ aþ b PRICE þ c VMEAN;

HERF ¼ aþ b PRICE þ c VMEAN;

where VSTD � ðtimeseriesÞ standard deviation of each stock’s volume aggregated over a 5 (15, 30, and 60) minute interval, PRICE� average

transaction price of each stock over the entire sample period, VMEAN� ðtimeseriesÞ mean of each stock’s volume aggregated over a 5 (15, 30, and 60)

minute interval, and HERF� Herfindahl Index of the 5 (15, 30, and 60) minute volume series. The number of observations in all regressions is equal to

1796. Each cell contains the regression coefficient, the t-statistic, and the p-value, respectively.

VSTD=a+bPRICE+cVMEAN HERF=a+bPRICE+cVMEAN

(1) 5min (2) 15min (3) 30min (4) 60min (1) 5min (2) 15min (3) 30min (4) 60min

R2 0.6474 0.7255 0.7263 0.7172 0.0323 0.0404 0.0391 0.0361

INTERCEPT 4556.44 7602.27 10,076 5751.26 0.0306 0.0418 0.0577 0.0398

14.292 13.177 10.025 11.068 33.665 45.902 58.545 40.924

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

PRICE �6.724 �6.906 �5.959 �7.465 �7.04E�06 �4.10E�06 �2.75E�06 �6.02E�06

�8.465 �10.459 �9.821 �9.414 �3.103 �3.937 �4.616 �4.036

0.0001 0.0001 0.0001 0.0001 0.0019 0.0001 0.0001 0.0001

VMEAN 1.122 0.8554 0.7480 1.101 �2.71E�07 �7.84E�08 �2.96E�08 1.17E�07

53.069 58.936 57.688 59.444 �4.489 �3.422 �2.331 �3.367

0.0001 0.0001 0.0001 0.0001 0.0001 0.0006 0.0199 0.0008
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m0:5½q
l	=½lþ ð1 � lÞm	: Note that both standard deviation and coefficient of
variation are functions of q
; which depends on the entire parameter set
fl; k; m; d; f ; wg:

Table 9 shows a series of optimal prices and the associated coefficient of
variation in per period trading volume. One can see that the optimal price
changes as the liquidity parameter (l) changes. Associated with each optimal
price are the amount of discretionary trading (q
), the standard deviation of per
period trading volume and the coefficient of variation of per period trading
volume. There is an inverse relationship between the price level and the
standard deviation or the coefficient of variation in volume. This implies that
our model is consistent with the empirically established negative relation
between price and concentrated trading reported in this section.

5.5. Post-split coefficient of variation in trading volume

A stock split offers a natural experiment to empirically test our model. After
a split, the only change that occurs is that of the price level. According to our
model, the lower price level after a split should cause an increase in the amount
of discretionary trading (q
). From the discussion in the previous section, we
can see that the standard deviation and coefficient of variation of per period

Table 9

Concentration of trading volume and price level

This table shows that a negative relationship between the degree of concentrated trading and the

price level is possible in the context of the model. As l increases, the optimal price increases. In

contrast, the sample standard deviation and coefficient of variation of per period trading volume

decrease with l. P0� base price, q 
 � fraction of liquidity traders who choose to act as

discretionary traders. We assume that, in a continuum of increasing costs, the qth percentile

liquidity traders faces a monitoring cost, C(q)=f/[�ln(q)]1/w, where f>0 and w>1. The parameters

defining the numerical solution are as follows: (i) l: the fraction of liquidity traders in the trading

population (T), (ii) k: the volatility parameter, which specifies the standard deviation of the private

information (d) in s(P0)=kP0, where P0 is the base price, (iii) m: the number of periods, (iv) d: the

tick size, and (v) ( f, w): the monitoring cost parameter pair that defines the monitoring cost

schedule. The parameters chosen for the simulation are: (i) T=200, (ii) k=0.02, (iii) m=10, (iv)

d=$0.125, and (v) f=0.0105, w=1.6.

Liquidity

parameter

(l)

Optimal

price

(P0*)

Optimal

effective

tick size

(d/P0*)

Optimal amount

of discretionary

trading

(q*)

Standard

deviation

of per period

trading volume

Coefficient of

variation

of per period

trading volume

0.70 35 0.0036 0.4543 404.44 0.2718

0.68 41 0.0030 0.4736 414.86 0.2625

0.64 63 0.0020 0.4985 407.12 0.2379

0.62 84 0.0015 0.5083 397.32 0.2255

0.60 120 0.0010 0.5183 386.79 0.2138
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trading volume are increasing in q
: Our model, therefore, implies that a stock
split should result in a higher standard deviation and coefficient of variation of
per period trading volume. Anshuman and Goyal (2001) examine a sample of
stock splits during 1993–1994 and find that, subsequent to stock splits, there is
an overall increase in the coefficient of variation of trading volume aggregated
over short intervals. This result is consistent with our model’s prediction.

5.6. Post-split volatility of returns

Note that the periods of concentrated trading on the ask and bid sides of the
market, in general, do not coincide because DRC on the ask side and bid side
of the market are not identical.28 Thus during periods of concentrated buying
(selling), the average transaction price is biased toward the ask (bid) price. This
bias causes significant price changes across the period of concentrated trading,
thereby creating volatility. Given that there is greater amount of discretionary
trading after a split, the above effect should be more pronounced after a split.
Our model implies that the volatility of returns should increase (decrease) after
a split (reverse split). Ohlson and Penman (1985), Lamoureux and Poon (1987),
and Koski (1998) present evidence that is consistent with this implication of the
model.

5.7. Decimalization of the minimum tick size

Our model suggests a linear relationship between the optimal price level and
the tick size. This result has implications for the proposed decimalization of
tick sizes on stock exchanges. If the tick size were to be reduced to 1 cent, the
optimal price would drop by a factor of 12.5, i.e., a $50 optimal price would
drop down to $4. This would mean that firms would undo the effect of the
change in tick size by employing stock splits. According to our model, when
firms believe that the new tick size is going to persist, they would employ a
series of splits or a one-time large split to converge to lower trading range. This
is an experiment that time will make possible. We believe that it is too early to
interpret the current evidence (on stock split activity) either in favor of our
model or against it.29 More importantly, we note that exchanges and regulating
bodies in the U.S. do not choose the effective tick size. They never did. Firms

28Asymmetric DRC on the ask and bid side arise because the true equilibrium price is, in general,

asymmetrically located with respect to feasible discrete prices. See Anshuman and Kalay (1998) for

a more detailed discussion of this issue.
29As pointed out by Angel (1997), there was a switch in price quoting rules from percentage of

par to dollar pricing in 1915. With percentage of par pricing, the effective tick size is invariant to the

price level and there were relatively few splits before 1915. After 1915, with dollar pricing, the

effective tick size depended on the price level. However, it took about 14 years for the average stock

price on the NYSE to drop from about $90 to $40, thereby doubling the effective tick size.
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choose the effective tick size by splitting and reverse splitting the stocks. If we
believe that insiders in firms know better than us as to what a stock’s optimal
effective tick size should be, any attempt to intervene via regulation is pointless.

6. Conclusion

This paper presents a theory that argues that splits improve liquidity. The
driving force behind the model is the discrete pricing restriction on organized
exchanges. Execution costs arising from discreteness vary over time. Liquidity
traders have an incentive to time their trades to lower their execution costs. The
asset price level affects their incentives because discreteness related costs are
determined by a nominally fixed tick size. By splitting, a firm lowers its stock
thereby increasing the incentives of liquidity traders to time their trades. The
resulting concentration of trades reduces overall transaction costs incurred by
liquidity traders. Our analysis also establishes the existence of an optimal price
level that minimizes transaction costs. Stock split factors can be adjusted to
reset the stock price level to the optimal level.

Appendix A. Derivation of Eq. (1)

The informed trader’s profit conditional on observing d is equal to (d� a),
where a is the ask commission charged by the market maker. The market
maker infers that the informed trader would trade only when d is greater than
a: Therefore, he computes his expected losses to informed traders to be equal to
ð1 � lÞTE½ðd� aÞjd > a	: At the same time his expected profits from liquidity
traders is equal to ðlT=mÞa: Setting the market maker’s expected profits to zero
yields the equilibrium commission (a
), i.e., a
 is given by the solution of the
following equation:

�ð1 � lÞT Probfd > agE½ðd� aÞjd > a	 þ ðlT=mÞa ¼ 0: ðA:1Þ

The conditional expected value, E½ðdÞ j d > a	; given d � Nð0; sðP0Þ
2Þ; is equal to

sðP0Þ ffða=sðP0ÞÞ=½1 � Fða=sðP0Þ	g (see Johnson and Kotz, p. 81), and noting
that Probfd > ag ¼ ½1 � Fða=sðP0Þ	; Eq. (A.1) may be simplified to: �ð1 �
lÞTfsðP0Þfða=sðP0ÞÞ � ½1 � Fða=sðP0Þ	ag þ ðlT=mÞa ¼ 0; as shown in Eq. (1),
where fð:Þ and Fð:Þ represent the probability density function and the
cumulative distribution function of the standard normal distribution,
respectively.

Further, given sðP0Þ ¼ kP0; Eq. (1) reduces to: �ð1 � lÞTfkP0fða=kP0Þ �
½1 � Fða=kP0Þ	ag þ ðlT=mÞa ¼ 0: Denoting (a=P0) by x; this equation becomes
�ð1 � lÞTfkfðx=kÞ � ½1 � Fðx=kÞ	xg þ ðlT=mÞx ¼ 0: Note that P0 appears in
this equation only through x: There is a unique solution to (x
) to this
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equation, which implies that as P0 changes, the variable a
 adjusts accordingly
in such a way that (a
=P0) is always equal to x
: In other words, the solution
(a
) is linear in P0:

Appendix B

Lemma 1. The conditional distribution of DRCt+j given DRCt 8j>1, is given by
the wrapped normal distribution over the interval (0, d).

For notational convenience, consider just the first two periods. Period 1
begins at time t ¼ 0 and ends at time t ¼ 1: Period 2 begins at time t ¼ 1 and
ends at time t ¼ 2: As shown in Anshuman and Kalay (1998), the posted ask
price is the nearest tick (d) greater than P0 þ a
; where the base price (P0) and
the equilibrium ask commission (a
) are common knowledge at time t ¼ 0: It
follows that the discreteness related commissions in Period 1 (DRC1) are
known to all traders at time t ¼ 0; as shown below:

DRC1 ¼
d �Mod½P0 þ a* ; d	 if Mod½P0 þ a* ; d	 > 0;

0 if Mod½P0 þ a* ; d	 ¼ 0:

(

It is more convenient to express the above formulation of DRC1 as
Mod½�ðP0 þ a
Þ; d	: Similarly, DRC2 is given by Mod½�ðP0 þ a
 þ dÞ; d	;
which is uncertain at time t ¼ 0 because d is going to be revealed at the end
of Period 1. Hence, the distribution of DRC2 is given by the distribution of the
modulus of a nonzero mean normal random variable, �ðP0 þ a
 þ dÞ; which is
Nðm;s2Þ; where m ¼ �ðP0 þ a
Þ:

Mardia (1972) discusses the distribution of the modulus of a mean zero
normal variable (referred to as the wrapped normal distribution). Extending
his results, we get the probability density function of DRC2 as

f ðy; mÞ ¼
1

s
ffiffiffiffiffiffi
2p

p Xk¼þN

k¼�N

exp �
1

2

½yþ dkÞ � m	2

s2

� �
;

where m ¼ �ðP0 þ a* Þ and 0pyod:

Noting that knowledge of m is equivalent to knowledge of DRC1 ¼
Modðm; dÞ; it follows that

f ðy;DRC1Þ ¼
1

s
ffiffiffiffiffiffi
2p

p Xk¼þN

k¼�N

exp �
1

2

½ðyþ dkÞ �DRC1	2

s2

� �
; 0pyod:

ðB:1Þ

The cumulative distribution function F ½y;DRC1	; can be computed by
integrating each term of the above expression. This is the conditional
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distribution of DRC2 given DRC1. It follows that

F ½yjDRC1	 ¼
Xk¼N

k¼�N

F
ðyþ dkÞ �DRC1

s

� �
� F

dk�DRC1

s

� �� �
; ðB:2Þ

where Fð:Þ denotes the cumulative distribution function of the standard normal
distribution. The conditional distribution of DRCt given DRC1 can be derived
in a similar manner. The only difference is that the underlying normal random
variable is

P
1;y; t ðdÞ; which is also normally distributed but has a much larger

variance. The conditional distribution of DRCt given DRC1 would therefore be
wrapped normal. In general, the above result applies for the conditional
distribution of DRCtþj given information at time t for all j > t: We refer to the
conditional distribution as Ftþjð:jDRCtÞ:

Proof of Proposition 1. We develop the optimal timing strategy of discre-
tionary traders. The total execution costs depend on adverse selection
commissions (al) and DRC. Discretionary traders can compare the execution
costs in the current period (al þDRC) with the Efal þDRCg upon deferring
trades. Note that al is minimized when ex-ante expected DRC are minimized.
Hence, minimizing (al þDRC) is equivalent to minimizing DRC.30

Let the realized DRC in any period (s) be denoted by DRCs ¼ zsd; 0ozsp1:
Let the discretionary traders’ trading (deferring) strategy be described by a set
of cutoffs (as; 0oasp1; s ¼ 1;y; m). Discretionary traders defer their trades
whenever the realized DRC in any period (s) is such that zs > as:

Let ½DRCt;y; mjDRCt�1 ¼ zt�1d	 denote the (conditional) expected DRC
when (t� 1) periods have elapsed, but period t has not yet begun. The
discretionary trader has to trade in any one period between t and m: Note that
discretionary traders would reach period t only if the realized DRC in all
previous periods was greater than the corresponding cutoffs. More impor-
tantly, the expected DRC would now depend on the cutoffs at;y; am and not on
any of the previous cutoffs. It follows that

E ½DRCt;y; m jDRCt�1 ¼ zt�1d	

¼ Ftðat jDRCt�1 ¼ zt�1dÞEfztd j0pztpat;DRCt�1 ¼ zt�1dg

þ ð1 � FtðatjDRCt�1 ¼ zt�1dÞÞEfDRCtþ1;y; mjDRCt�1 ¼ zt�1dg: ðB:3Þ

Note that at appears in Ftð:Þ and Efztdg; but does not appear in the term
EfDRCtþ1;y; m	: The latter is a function of the cutoffs, atþ1;y;am: Using the
results for Ftð:Þ in Eq. (B.2) and the result in Lemma 2 (stated below) Eq. (B.3)

30Since al is a function of q
; which is a function of the savings form timing trades, al depends on

the EðDRCÞD from the overall dynamic strategy. Hence al is a function of all the optimal cutoffs

from time t ¼ 1 to m: As argued earlier (see footnote 13), al gets minimized when EðDRCÞD gets

minimized. Therefore, we can solve for the cutoffs by applying the dynamic optimization only with

respect to DRC.
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can be further simplified as

E½DRCt;y; mjDRCt�1 ¼ zt�1d	

¼
Xk¼N

k¼�N

s f
dk� zt�1d

s

� �
� f

atd þ dk� zt�1d

s

� �� �

þ ðzt�1d � dkÞ F
atd þ dk� zt�1d

s

� �
� F

dk� zt�1d

s

� �� �

þ 1 �
Xk¼N

k¼�N

F
atd þ dk� zt�1

s

� �
� F

dk� zt�1

s

� �� � !

EfDRCtþ1;y; mjDRCt�1 ¼ zt�1dg: ðB:4Þ

Differentiating Eq. (B.4) with respect to at; and noting that the term
EfDRCtþ1;y; mg does not contain at; we get upon simplification the following
first order condition and second order condition (which ensures minimization):

a*
t : atd � EfDRCtþ1;y; m jDRCt�1 ¼ zt�1dg ¼ 0; ðB:5Þ

d > 0: ðB:6Þ

Expansion of the term EfDRCtþ1;y; m jDRCt�1 ¼ zt�1dg in Eq. (B.5) results in
the equation stated in Proposition 1 (after noting that the conditioning variable
should be DRCt ¼ ztd at the beginning of period t).

This first order condition holds for all periods except the last period, where
the constraint a*

m ¼ 1 holds. Since the first order condition determining a*
m�1

depends on a*
m; the problem can be solved using a dynamic programming

procedure that solves the cutoffs in a sequential manner starting from the last
period and going backward to the first period. In other words, Eq. (B.5) has to
be solved recursively from t ¼ ðm� 1Þ;y; 1 to determine the cutoffs
a*
m�1;y; a*

1 ; using the constraint a*
m ¼ 1: &

Lemma 2

Efztd j 0pztpat;DRCt�1 ¼ zt�1dg

¼

Pk¼N

k¼�N
s f

dk� zt�1d

s

� �
� f

atd þ dk� zt�1d

s

� �� �
þ ðzt�1d � dkÞ F

atd þ dk� zt�1d

s

� �
� F

dk� zt�1d

s

� �� �
Pk¼N

k¼�N
F

atd þ dk� zt�1

s

� �
� F

dk� zt�1

s

� �� � ;

where fð:Þ stands for the standard normal density function and Fð:Þ stands for the
cumulative standard normal.
The (conditional) probability density function of the DRCt=ztd is given in

Eq. (B.1) and the (conditional) cumulative distribution function is given in
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Eq. (B.2). Using these results, it follows that

Efztd j 0pztpat; DRCt�1 ¼ zt�1dg

¼

R at
0 yf ðyÞ dyR at
0 f ðyÞ dy

¼

Pk¼þN

k¼�N

R atd
0

1

s
ffiffiffiffiffiffi
2p

p ye�ð1=2Þ½ðyþdk�zt�1dÞ=s	2

Pk¼þN

k¼�N
F

atd þ dk� zt�1

s

� �
� F

dk� zt�1

s

� �� �:

Using properties of the normal distribution, the result in Lemma 2 follows.

Appendix C. Derivation of cumulative monitoring costs

The cumulative monitoring cost component of the total transaction cost
function is given byZ q *

0

CðqÞlT dq ¼
Z q *

0

f lT

½�LnðqÞ	1=w
dq:

Let s � �LnðqÞ: Then, the expression simplifies to �ðf lTÞ
R Lnðq * Þ
N

s�1=we�s ds ¼
ðlTÞfGððw� 1Þ=wÞf1 � GAMMADIST ½�Lnðq* ÞÞ	g; where Gð:Þ denotes the
gamma function and GAMMADIST denotes the cumulative distribution
function of the standard gamma distribution with parameter ½ðw� 1Þ=w	: Note
w > 1 is required for Gððw� 1Þ=wÞ to be defined properly and the integration to
hold.
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